
Key Takeaways
AI companies often use benchmarks to test 
their systems on narrow tasks but then make 
sweeping claims about broad capabilities 
like “reasoning” or “understanding.” This gap 
between testing and claims is driving misguided 
policy decisions and investment choices. 

Our systematic, three-step framework helps 
policymakers separate legitimate AI capabilities 
from unsupported claims by outlining key 
questions to ask: What exactly is being claimed? 
What was actually tested? And do the two match?

Even rigorous benchmarks can mislead: We 
demonstrate how the respected GPQA science 
benchmark is often used to support inflated 
claims about AI reasoning abilities. The issue is 
not just bad benchmarks; it is how results are 
interpreted and marketed.

High-stakes decisions about AI regulation, 
funding, and deployment are already being 
made based on questionable interpretations of 
benchmark results. Policymakers should use this 
framework to demand evidence that actually 
supports the claims being made.
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When OpenAI claims GPT-4 shows “human-level performance” 
on graduate exams, or when Anthropic says Claude demonstrates 
“graduate-level reasoning capabilities,” how can policymakers 
verify these claims are valid? The impact of these assertions 
goes far beyond company press releases. Potential claims 
made on benchmark results are increasingly influencing 
regulatory decisions, investment flows, and model deployment 

in critical systems.

The problem is one of overstating claims: Companies test their AI 

models on narrow tasks (e.g., multiple-choice science questions) but 

then make sweeping claims about broad capabilities based on these 

narrow task results (e.g., models exhibiting broader “reasoning” 

or “understanding” based on Q&A benchmarks). Consequently, 

policymakers and the public are left with limited, potentially 

misleading assessments of the capabilities of the AI systems that 

are increasingly permeating their everyday lives and society’s 

safety-critical processes. This pattern appears across AI evaluations 

more broadly. For example, we may incorrectly conclude that 

if an AI system accurately solves a benchmark of International 

Mathematical Olympiad (IMO) problems, it has reached human-

expert-level mathematical reasoning. However, this capability also 

requires common sense, adaptability, metacognition, and much 

more beyond the scope of the narrow evaluation based on IMO 

questions. Yet such overgeneralizations are common.

https://openai.com/index/gpt-4-research/
https://www.anthropic.com/news/claude-4
https://artificialintelligenceact.eu/article/51/
https://inspect.aisi.org.uk/
https://ninza7.medium.com/did-ai-just-have-its-checkmate-moment-for-human-intellect-8d92b7fb6108
https://ninza7.medium.com/did-ai-just-have-its-checkmate-moment-for-human-intellect-8d92b7fb6108
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In our paper “Measurement to Meaning: A Validity-

Centered Framework for AI Evaluation,” we propose 

a practical and structured approach that cuts through 

the hype by asking three simple questions: What 

exactly is someone claiming about their AI system? 

What did they actually test using a benchmark? And 

what is the evidence that their claim is valid based on 

that test? We focus on five key types of validity that 

are most relevant for evaluating AI systems today.

Policymakers must assess a growing number of claims 

about AI systems, including, but not limited to, their 

capabilities, risks, and societal impacts. We aim to 

provide policymakers and the public with a formalized, 

scientifically grounded way to investigate which 

claims about an AI model are supported — and which 

aren’t. The validation framework presented in this 

brief is designed to evaluate all such claims. However, 

given the recent surge in capability claims from AI 

developers, this brief focuses on how to validate 

capability-related claims. 

Model benchmarks serve as a powerful tool to 

evaluate AI systems. However, policymakers must 

work with developers and researchers to more 

rigorously define, report, and understand evaluations. 

Our targeted approach demonstrates how to use this 

systematic, evidence-based framework to cut through 

the hype and ensure policy decisions are based on 

solid ground and avoid tremendous miscalculations.

Introduction
Benchmarks have long helped align academia, industry, 

and other stakeholders around defining criteria to 

measure progress in specific AI systems. Evaluations have 

primarily aimed at measuring scientific progress — for 

example, performance on ImageNet, a large-scale image 

classification benchmark, has been viewed as an indicator 

of general scientific progress in AI methods. When new 

optimizers, architectures, or training procedures perform 

better on benchmarks, they also tend to lead to the 

development of better models across other tasks. 

Today, the focus of evaluation has expanded from 

benchmarking methods to benchmarking models 

themselves, where benchmark performance is now 

taken as a proxy for real-world utility, often without 

sufficient evidence that this proxy relationship holds. 

Benchmark performance does not always equal 

reliable real-world performance or trustworthy 

decision-making. Model performance on a single 

benchmark can be overstated by conflating correlation 

with causation, discounting distribution shifts (where 

the statistical distribution of data changes between 

training and deployment), and downplaying the 

challenges with causal representation (understanding 

internal behavior based on observed data).

Benchmark performance  
does not always equal reliable  

real-world performance or 
trustworthy decision-making.

https://arxiv.org/abs/2505.10573
https://arxiv.org/abs/2505.10573
https://www.science.org/doi/10.1126/science.adu8449
https://hdsr.mitpress.mit.edu/pub/g9mau4m0/release/2
https://hdsr.mitpress.mit.edu/pub/8dqgwqiu/release/1
https://dl.acm.org/doi/abs/10.1145/3708359.3712152
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1805.08974
https://arxiv.org/abs/2404.02112
https://openaccess.thecvf.com/content_CVPR_2019/papers/Kornblith_Do_Better_ImageNet_Models_Transfer_Better_CVPR_2019_paper.pdf
https://arxiv.org/abs/2412.05520
https://openreview.net/forum?id=fNywRyqPQo
https://www.pnas.org/doi/10.1073/pnas.2416228122
https://arxiv.org/abs/1605.08179
https://dcai.csail.mit.edu/2024/imbalance-outliers-shift/
https://arxiv.org/abs/2102.11107
https://pubmed.ncbi.nlm.nih.gov/35568690/
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validation process for testing capability claims about 

AI models (see Figure 1). While our framework can also 

be applied to testing other claims, such as about AI 

models’ risks or other downstream impacts, we focus 

in this brief specifically on testing claims about AI 

model capabilities. 

First, we must decide the object of our claim: Is 

it a criterion (i.e., something that can directly be 

measured, such as arithmetic accuracy) or a construct 

(i.e., something abstract that cannot directly be 

measured, such as “intelligence”)? Second, we must 

explicitly state the claim — that is, what we want 

to say about the criterion (e.g., “model A can be 

used as a calculator”) or the construct (e.g., “model 

A is intelligent”). Third, we must identify or perform 

experiments to gather evidence and assess whether it 

supports the desired claim (e.g., calculator functions 

may mean arithmetic accuracy, but high intelligence 

is unlikely) — or, in the case of reported benchmarks, 

decide if the benchmark truly supports our (or a model 

developer’s) claim. Aligning what is measured, how it 

is interpreted, and the overarching claim is central to 

establishing validity.

Foundation models, which can operate across diverse 

tasks out of the box, further complicate the translation 

of narrow measurements into broad conclusions. 

Foundation models are not trained — and rarely tested 

— with a specific task in mind. Instead, in the absence 

of such concrete use cases, model developers try 

to test for more general (and often abstract) skills of 

these general-purpose models, such as “reasoning” 

or “intelligence,” which they assume would be helpful 

across a variety of tasks to predict broad and diverse 

downstream utility. However, designing meaningful, 

valid tests for such abstract capabilities is much harder 

than designing an evaluation that tests if the model is 

good at one specific task. Collectively, these trends 

and tendencies increase the likelihood that companies 

and researchers may intentionally or unintentionally 

overstate a model’s capabilities.

Our paper builds on prior literature by explicitly 

arguing that validity (i.e., the degree to which evidence 

and theory support the interpretations of test scores) 

depends not just on the measurement and evaluation 

of a model, but also on the claim that is being 

made about its capabilities. We lay out a three-step 

Examples

1. Decide Object of Claim 2. State Claim 3. Review Evidence

Can the capability be measured 
(criterion) or not (construct)?

What do we want to say about
 the criterion or construct?

Is the claim valid based on the 
evidence we can gather?

Examples Examples
High standardized math test scores

implies high arithmetic accuracy.Arithmetic accuracy (criterion)

Intelligence (construct)

Model A can be used as a calculator.

Model A is intelligent.
High Math Olympiad problem-solving 

accuracy implies high intelligence.

Figure 1: Three-Step Validation Process for Testing AI Capability Claims

https://arxiv.org/abs/2410.05229
https://aclanthology.org/2024.naacl-long.102/
https://arxiv.org/abs/2401.00757
https://arxiv.org/abs/2111.15366
https://arxiv.org/abs/1912.05511
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Applying a Claim-Centered 
Validity Framework for  
AI Evaluation
To determine to what extent evidence supports 

desired claims (the third step of our framework), 

decision-makers should consider what we consider the 

five most relevant validity types for AI systems and ask 

themselves the following questions:

• �Does the evaluation cover all relevant cases? Known 

as content validity, this is at risk when important 

aspects of the criterion or construct to be evaluated 

are missing.

• �Does the evaluation correlate with a known, 

validated standard? Known as criterion validity, 

this is at risk when the evaluation diverges from 

established, validated benchmarks or when the 

criterion itself is poorly chosen.

• �Does the evaluation truly measure the intended 

construct? Known as construct validity, this is at risk 

when measurements fail to align with the underlying 

concept, different parts of the test don’t relate to 

each other in the way the theory predicts, the test 

picks up on unrelated factors (like language skills or 

test-taking strategies) instead of the construct, or the 

construct is not well captured across different levels 

of ability.

• �Does the evaluation generalize across different 

environments or settings? Known as external validity, 

this is at risk when tests are validated on narrow 

or unrepresentative populations or with testing 

conditions that may not reflect real-world scenarios.

• �Does the evaluation consider the real-world 

impact of test interpretation and use? Known as 

consequential validity, this is at risk when results 

systematically disadvantage certain groups.

To illustrate these problems in practice, we apply our 

validity framework and this risk lens to real-world LLM 

benchmarks, including the popular Graduate-Level 

Google-Proof Q&A (GPQA) benchmark. GPQA relies 

on 448 graduate-level science questions that even PhD 

experts answer correctly only 65% of the time. When 

an AI scores well on GPQA, some AI developers claim 

Claims from Graduate-Level Google-Proof Question Answering (GPQA) Benchmark Accuracy Report Card

Claims Content Criterion Construct External Consequential

1. AI systems can accurately answer graduate-level 
specialized multiple-choice questions in biology, 
physics, and chemistry.

2. AI systems can accurately answer graduate-level 
specialized questions in specialized scienti�c domains.

3. AI systems can exhibit general reasoning abilities
that can transfer beyond current human specialization.

Table 1: A subjective validity scoring of the GPQA benchmark, where blue OKs indicate that the benchmark meets reasonable 
standards for addressing risks to validity, yellow exclamation marks signal caution, and red cross marks indicate insufficient 
evidence.

https://www.aera.net/publications/books/standards-for-educational-psychological-testing-2014-edition
https://journals.sagepub.com/doi/10.1177/001316445001000201
https://psycnet.apa.org/record/1996-93318-001
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2023.1248246/full
https://psycnet.apa.org/record/1996-10004-001
https://pubmed.ncbi.nlm.nih.gov/20550733/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11480901/
https://link.springer.com/article/10.1007/BF02294825
https://psycnet.apa.org/record/1996-10004-001
https://www.tandfonline.com/doi/full/10.1080/10627197.2023.2223924
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://www.anthropic.com/news/claude-3-7-sonnet
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it has achieved graduate-level “scientific reasoning.” 

But our analysis shows this benchmark actually only 

supports much narrower claims: The AI can answer 

multiple-choice questions in three specific science 

fields. Claiming broader reasoning abilities requires 

evidence that the benchmark simply doesn’t provide.

More specifically, we find that GPQA, for the 

most part, supports the basic claim that strong 

performance on the benchmark means AI models 

can accurately answer graduate-level specialized 

multiple-choice questions across biology, physics, 

and chemistry. The benchmark is based on expert-

curated questions that mirror a real-world setting, 

which enhances content validity by ensuring 

relevance and rigor across subjects and ensures 

external validity by demonstrating generalization to 

other external graduate-level assessments beyond 

GPQA itself. Clear guidance — for example, by 

the benchmark developers — for how to interpret 

benchmark results could help improve consequential 

validity by ensuring that stakeholders don’t assume 

AI models have true general expertise in these three 

sciences if they score well on the benchmark. 

A second possible claim that has been made from 

GPQA is that high scores mean models can accurately 

answer graduate-level questions generally across 

specialized scientific domains. This claim requires 

more evidence than is provided by the benchmark. 

For example, regarding construct validity, GPQA’s 

focus on only three sciences and a multiple-choice 

format limits its ability to capture the overall construct 

of “specialized scientific knowledge” and may fail 

to capture deeper analytical reasoning. Including 

additional domains (e.g., medicine, engineering) and 

open-ended question formats would better capture 

general domain-specific scientific competence.

Finally, the claim that GPQA accuracy is evidence 

of general graduate-level reasoning is largely not 

supported. To truly support this claim, GPQA would 

need to, among other things, demonstrate that the 

benchmark covers diverse reasoning types (content 

validity), compares performance against other 

established domain-specific and independent reasoning 

benchmarks (criterion validity), and generalizes to 

reasoning tasks outside of science, such as logical 

puzzles or philosophical reasoning (external validity). 

This could be accomplished by establishing correlations 

between the benchmark and real graduate program 

exams, tracking the model’s downstream performance 

across scientific domains, and other steps.

Without showing that GPQA performance reflects 

the same underlying capabilities as general reasoning, 

claims about an AI model outperforming scientists — 

or humans more broadly — based on GPQA remain 

unvalidated. The limits of GPQA as a scientific evaluation 

mechanism underscore the need to distinguish validated 

reasoning abilities from speculative claims.

Claiming broader reasoning 
abilities requires evidence  
that the benchmark simply  

doesn’t provide.
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Policy Discussion
These validity gaps aren’t just academic matters — 

they can have significant real-world consequences. 

The EU AI Act, under Article 51, already uses 

benchmark performance to classify AI risk levels. In 

the United States, policymakers are similarly turning 

to AI evaluations as they consider applying existing or 

new regulations to AI systems. If benchmarks do not 

actually measure what matters for safety, we could 

end up with a false sense of security about unsafe 

systems or unnecessary restrictions on safe ones. 

Beyond parsing claims about AI models, U.S. 

policymakers should also include validity specifications 

in pre-deployment testing requirements. Companies 

and researchers using benchmarks to make AI model 

claims often lack best practices to ensure that their 

claims are scientifically rigorous. A practical solution 

exists: Before any AI system gets deployed in critical 

application areas like healthcare, require developers 

to clearly state what capability claims their evaluations 

are designed to support, and why the evaluations are 

valid evidence of the claims. This is not about slowing 

down AI development; it is about making sure we are 

building on solid ground rather than hype.

Policymakers need a systematic way to evaluate 

AI claims before making regulatory decisions. Our 

framework provides that systematic approach 

— a way to demand evidence that matches the 

scope of the claims being made. This mapping of 

measurements to valid claims will become all the 

more important for claims impacting risk, safety, 

and societal impact, where policy miscalculations 

could have serious consequences. For example, clear 

performance guidelines should distinguish validated 

reasoning abilities from speculative claims, preventing 

misapplications of AI in scientific decision-making 

settings like hospitals. Using this framework can 

help ensure AI policy is evidence-aligned and that 

policymakers do not fall for misinterpretations or 

mischaracterizations of AI model evaluations.

Advancing measurement science is a crucial step 

to building an AI evaluations ecosystem that is 

scientifically grounded and can support evidence-

based AI governance mechanisms. These efforts must 

focus on how to validate claims about AI capabilities. 

When implemented thoughtfully, our framework does 

not just prevent bad decisions — it accelerates good 

ones. When we can trust what AI evaluations actually 

tell us, we can deploy useful and beneficial AI faster 

and more safely.

Policymakers need a systematic 
way to evaluate AI claims before 

making regulatory decisions. 
Our framework provides that 

systematic approach.

https://artificialintelligenceact.eu/article/51/
https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://arxiv.org/abs/2503.10694
https://www.science.org/doi/10.1126/science.adu8449
https://www.science.org/doi/10.1126/science.adu8449
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