Students training on a simulator, learning to control OceanOne, a new humanoid robotic diver
Research Mission
Current AI systems lack flexibility and contextual understanding, and resist explanation in terms comprehensible by humans. Ultimately we need to develop machine intelligence that understands human language, emotions, intentions, behaviors, and interactions at multiple scales.
Today’s AI methods can perform simple, well-defined, narrow tasks well, but only after training on laboriously annotated data. While recent algorithms have enabled us to solve formerly intractable real-world problems, it remains to be seen how far they can go, and whether they can ultimately serve as the basis for a general theory of intelligence and the development of truly intelligent machines.
Current AI systems lack flexibility and contextual understanding, and resist explanation in human-comprehensible terms. To create a machine-assisted — yet human-centered — world, we must develop the next generation of AI techniques that overcomes the limitations of current algorithms, expands the class of problems that can be addressed, and complements human cognitive and analytic styles. Ultimately we need machine intelligence that leads to good decisions, either acting alone or working in combination with human decision-makers. It should understand human language, emotions, intentions, behaviors, and interactions at multiple scales.
Tackling these challenges on both the theoretical and practical levels requires substantial fundamental research. Developing a next generation of human-centered machine intelligence will demand combining further research in core machine learning and artificial intelligence with approaches coming from our growing understanding of human intelligence developed in areas including neuroscience and cognitive science.