In Vitro to In Vivo Translation of AI for Clinical Use: Screening for Acute Coronary Syndrome to Identify STEMI

Gabrielle Bunney MD MBA, Kate Miller PhD MPH, Anna Graber-Naidich MSc PhD, Rana Kabeer MD MPH, Sean M. Bloos MPH, Alexander J. Wessels BS, Melissa A. Pasao BS, Marium Rizvi BS, Ian P. Brown MD MS, Maame Yaa A. B. Yiadom MD MPH MSCI

Background
- Patients presenting to the Emergency Department (ED) who are at risk of Acute Coronary Syndrome (ACS) should receive an ECG within 10 minutes of arrival.
- We have built a logistic model to estimate patients’ ACS risk.
- Based on the model’s performance, we believe it can reduce the time to ECG if implemented in clinical care.
- Before using AI in live care, testing is required to ensure patient safety. Standards for such testing are needed.
- We present our method and results from a prospective silent pilot of our model programmed as Clinical Decision Support (CDS) in the electronic health record (EHR).

Methods
- Prospective silent pilot with iterative cycles
- Predictive model
- Program into CDS
- Two analyses of technical performance
- Run silently for a short period
- Pull “live care data” for that period

Results

A. Technical Component Analysis
1. **Population Capture**
 - Ineligible patients were initially included, such as those in the Clinical Decision Uni or under 18.
2. **Risk Prediction Score Calculation**
 - The 4th decimal place of the decision threshold was missing.
3. **Decision Threshold**
 - The symbol ≥ had been inputted as >.
4. **Data Capture for Monitoring and Transparency**
 - Initially, the report of CDS data included only the “yes” screening decisions.
5. **CDS Decision Alignment with Risk Calculation**
 - In 21 encounters, the CDS screening decision did not align with the calculated risk score.

B. Technical Fidelity Analysis
- Agreement between CDS and model: Raw agreement 96%, Kappa 88%
- Impact of data missingness: Impact of calculation method
 - Impact of calculation method: 98%

Conclusions
- This methodology evaluated the technical translation of a predictive model into CDS.
- With each iteration, issues were discovered and successfully corrected.
- The CDS screening decisions substantially agreed with the original model’s decisions, and disagreements were due to both missing data and calculation differences.
- We look forward to evaluating the impact of this CDS on STEMI screening when it becomes available for use in live care.

gbunney@stanford.edu; myiadom@stanford.edu