Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data
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INTRODUCTION

Analyzing tabulated datasets such as genomics data
is critically important in the diagnosis, prognosis,
and treatment of different diseases. This work
proposes a novel approach to transforming the
tabulated genomics data into a 2D image format
utilizing gene-gene interactions. 2D convolutional
neural networks (CNNs) are then employed for deep
data analysis. The developed approach enables high-
performance analysis of the data for improved
clinical decision-making.

MATERIALS AND METHODS

To reconfigure the tabulated data of m cells and n
genes, we compute the pairwise interaction matrix
among the genes of size nxn. We then compute the
pairwise Euclidean distance matrix among the n
locations in a 2D grid of size nxn. We optimize the
Gromov-Wasserstein discrepancy between these two
matrices to obtain a transformation matrix T.
Multiplying the tabular expression data with the
transformation matrix allows us to obtain m number
of image representations of the samples. @ We then
apply a 10-layer deep neural network with 1
convolutional layer (kernel size [3,3]), 3 dense layers,
2 relu layers, and 1 dropout layer for different
downstream analyses.
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Fig 1. Deep analysis of gene expression data by using genomap and genoNet. (a) Workflow of genomap
generation from scRNA-seq data. Note that the genomap is dataset dependent and the gene distribution in
the genomaps vary with dataset. b) GenoNet is applied on the genomaps to extract deep level features for

downstream analyses.
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Fig 2. Genomaps created from Tabula Muris dataset.
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Fig. 5. Cell classification accuracy of the proposed
approach and eleven existing techniques for T-cell
landscape dataset
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are then analyzed using 2D convolutional neural
networks (CNNs) for learning the underlying patterns.
This innovative approach facilitates high-quality data
analysis, resulting in improved downstream analysis and
clinical decision-making.
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