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Note:

Summary

= Points in Figure 4 represent the difference in mean output values with respect to race and
gender (white and male are benchmarks).

| want to buy a[ bicycle | variation Q]]from[ DaShawn Washington.I The bicycle is a 2021 Trek Verve 3 Disc. | context g]]

= Audit design to invesh’gate biases In state-of-the-art |arge Ianguage models. [ Provide an estimate for the initial offer | should propose in US dollars. | ourcome g)]RepIy only with the number despite not

= A positive difference (to the right of the zero line) indicates negative outcomes for vulnerable

= Prompt the models for advice involving a named individual across a variety of scenarios. groups (Black and female individuals).

having any details. Don't add any more comments after the number. We don't have any more data , so provide your best .. , , )
= \We present one variation for each scenario (the one with the greatest average normalized

mean difference in each scenario).

= The advice systematically disadvantages names associated with racial minorities and women.
= Black women names receive the least advantageous outcomes.

guess .
Low Context High Context
Methods Figure 2. Example of prompt with reference to dimensions. 7 01754 ® o ois ]
2 ® opt4
. ] ® ogptéo ]
. . e o Results S 0150 lama3-708
= We ask the LLM for advice regarding a specific individual, and vary that individual's name. = mistral-large
. . = ] palm-2 ]
= The 40 selected names are perceived to strongly correlate with race and gender. Bicycle Car House g 012
. . . . . 400 1 Grou —— p— ":;
= To assess bias, we define scenarios that reflect potential stereotypes that might be present in = vihite . - 5 01004 |
: : __ 350 { W= Black - = 400000 1 = O
LLMs across several dimensions. 3 Male - L E °
L 1o | ™ Female 15000 - I S ® O O
= Figure 1 summarizes our 42 prompt templates and what each dimension represents. £ - g 001> '
R 12500 4 . - —
a0 250 4 L = =
% 200 - 10000 1 .ign 0.050 1 ® 1
§ - 200000 A =
& 1501 = 73901 & 0.025 ' ®
5 A o ®
Biases across several More granular level ; £ clatail § 100 1 2% 100000 z
e e Varying amount of detal = = B 0.000 fmmmm e e e e e e e I
S added. High is qualitative; 50 - 2500 1 3 o
ecomomic, intelligence, L o =
. numeric Is quantltatwe. 0 0. | h —0.025 - i
ElE‘Ctﬂbil[t}". Low High Numeric Low High Numeric Low High Numeric ' . . | .
Context Level Race Gender Race Gender
\. J, v J,

Figure 3. Results for Purchase Scenario (GPT 4.0) Figure 5. Standardized results across models for non-sports scenarios

Scenario Outcome Variation Context Level
Note: The bar heights indicate the average initial offer generated for each group and context in U.S dollars.
I : N : Note:
ow High umeric
| _ Puchase - Bicycl Chess Public office - Cty Counci Sports - basketbal Hiring - Lawyer = Figure 5 shows the average standardized mean for each model and context level, grouped by
Bicycle Model, Make, + Estimated C
_— Price in . " " variations and race/gender.
urchase ar ear alue - | | | . N o _ . .
US Dollars Description PEET ! ) = Positions above the zero line suggest a less favorable outcome to minorities and women.
House Size, Location Value : = We exclude all Sports scenarios since they were tailored to represent predominantly White or
Probability of Skills + FIDE ELO Black performance.
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& T paigr We observe strong, persistent, and systematic disparities against Black people and women
Basketball . ¢ * "' — across models.
Draft Football Skills - LT pOsthian ) = Names associated with white men yield the most beneficial predictions, while those
SpaTte Position Hockay Pescrintion S0F-aimitar i associated with Black women generate the least advantageous outcomes.
Lacrosss PRI . . = Providing the model with qualitative context has an inconsistent effect on biases, while a
Security Guard numeric anchor effectively removes name-based disparities.
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Figure 1. Summary of Prompt Alternatives . . = ° .
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= Models used: OpenAl’s gpt-4-1106-preview (baseline), Google Al's PaLM-2, OpenAl’s gpt-3.5 Vean Difference
and gpt-4o, Mistral's Large, and Meta’s Llama-3-70b-instruct. ° Race ¢ Gender

= Figure 2 is an example of a prompt for the Purchase scenario, Bicycle variation, with High

context level for DaShawn Washington. Figure 4. Aggregated Mean Differences across Race and Gender (GPT 4.0)
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