Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
Thomas Teisberg: Monitoring Ice Sheets with UAV-borne Ice-penetrating Radar Systems and Physics-informed Machine Learning | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
    • Subscribe to Email
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
eventSeminar

Thomas Teisberg: Monitoring Ice Sheets with UAV-borne Ice-penetrating Radar Systems and Physics-informed Machine Learning

Status
Past
Date
Wednesday, October 26, 2022 10:00 AM - 11:00 AM PST/PDT
Location
Hybrid 
Share
Link copied to clipboard!
Event Contact
Madeleine Wright
mwright7@stanford.edu

Related Events

AI+Education Summit 2026
ConferenceFeb 11, 20268:00 AM - 5:00 PM
February
11
2026

The AI Inflection Point: What, How, and Why We Learn

Conference

AI+Education Summit 2026

Feb 11, 20268:00 AM - 5:00 PM

The AI Inflection Point: What, How, and Why We Learn

Tom Mitchell | The History of Machine Learning
Feb 23, 202612:00 PM - 1:00 PM
February
23
2026

How did we get to today’s technology which now supports a trillion dollar AI industry? What were the key scientific breakthroughs? What were the surprises and dead-ends along the way...

Event

Tom Mitchell | The History of Machine Learning

Feb 23, 202612:00 PM - 1:00 PM

How did we get to today’s technology which now supports a trillion dollar AI industry? What were the key scientific breakthroughs? What were the surprises and dead-ends along the way...

Gaidi Faraj, Lofred Madzou | Nurturing Africa’s AI Leaders through Math Olympiad
SeminarFeb 25, 202612:00 PM - 1:15 PM
February
25
2026

The African Olympiad Academy is a world-class high school dedicated to training Africa’s most promising students in mathematics, science, and artificial intelligence through olympiad-based pedagogy.

Seminar

Gaidi Faraj, Lofred Madzou | Nurturing Africa’s AI Leaders through Math Olympiad

Feb 25, 202612:00 PM - 1:15 PM

The African Olympiad Academy is a world-class high school dedicated to training Africa’s most promising students in mathematics, science, and artificial intelligence through olympiad-based pedagogy.

HAI Weekly Seminar

Monitoring Ice Sheets with UAV-borne Ice-penetrating Radar Systems and Physics-informed Machine Learning

The Antarctic Ice Sheet will play a growing role in sea level rise over the next century, but models of sea level contributions from the vast ice sheet carry far larger uncertainty estimates than other major contributing sources. A number of factors contribute to this uncertainty, all of which can be traced back to a sparsity of data. The Antarctic Ice Sheet is nearly 50% larger than the United States in area and holds ice equivalent to over 60 meters of global sea level rise. Satellite observations have turned the surfaces of Earth’s ice sheets into data-rich environments, yet the subsurface environments remain sparsely observed.Multiple potential positive-feedback processes have been proposed that could dramatically alter our predictions of the future of the ice sheet. These hypotheses are difficult to test because the processes would likely not have occurred in the relatively short direct span of direct observations available to us, but, in many cases, we also lack the observational infrastructure to identify these processes beginning today. Even well-established processes still carry large uncertainties in how they will impact the ice sheet due to the poor spatial and temporal resolution of data available.Our group explores this problem from two fronts: using robotics to enable more widespread data collection and leveraging data-based approaches to maximize the value of data collected. Uncrewed aerial vehicles (UAVs) carrying ice-penetrating radar instruments hold the potential to dramatically expand sub-surface data collection by reducing the cost, logistical complexity, and safety risks associated with current approaches. At the same time, the scale of the problem is so vast that it is critical to consider how we can optimize the deployment of resources to maximize the value of the collected data. This requires a move towards data-driven approaches to understanding the behavior of the ice sheet.

Thomas TeisbergThomas Teisberg

HAI Graduate Fellow 2021-22

No tweets available.