Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
Kuang Xu | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
    • Subscribe to Email
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
peopleFaculty

Kuang Xu

Associate Professor of Operations, Information and Technology at the Graduate School of Business and, by courtesy, or Electrical Engineering

External Bio

Kuang Xu is an Associate Professor of Operations, Information and Technology at Stanford Graduate School of Business, and Associate Professor by courtesy with the Electrical Engineering Department, Stanford University. Born in Suzhou, China, he received the B.S. degree in Electrical Engineering (2009) from the University of Illinois at Urbana-Champaign, and the Ph.D. degree in Electrical Engineering and Computer Science (2014) from the Massachusetts Institute of Technology. 

His research primarily focuses on understanding fundamental properties and design principles of large-scale stochastic systems using tools from probability theory and optimization, with applications in queueing networks, healthcare, privacy and machine learning. He received First Place in the INFORMS George E. Nicholson Student Paper Competition (2011), the Best Paper Award, as well as the Kenneth C. Sevcik Outstanding Student Paper Award at ACM SIGMETRICS (2013), and the ACM SIGMETRICS Rising Star Research Award (2020). He currently serves as an Associate Editor for Operations Research and Management Science.

Share
Link copied to clipboard!