HAI Weekly Seminar with Sherri Rose
Machine Learning in Health Care: Too Important to Be a Toy Problem
Live Virtual Event
Event Details
Event Type
Watch the Full Recording
Abstract
Health care is moving toward analytic systems that take large databases and estimate varying quantities of interest both quickly and robustly, incorporating advances from statistics, econometrics, and computer science. The massive size of the health care sector make data science applications in this space particularly salient for social policy. This presentation will discuss specific challenges related to developing and deploying statistical machine learning algorithms for health economics and outcomes research. Considerations go beyond typical measures of statistical assessment, and include concepts such as dataset shift and algorithmic fairness. An overarching theme is that developing methodology tailored to specific substantive health problems and the associated electronic health data is critical given the stakes involved.
Seminar Speaker
Sherri Rose
Professor of Health Policy, Stanford University; Co-Director, Stanford Health Policy Data Science Lab; Faculty Affiliate, Stanford HAI