AI will revolutionize healthcare, from diagnostics to operations, and create new concerns for patient privacy and security.

Stanford researchers have developed a deep learning model that transforms overwhelming brain data into clear trajectories, opening new possibilities for understanding thought, emotion, and neurological disease.

Stanford researchers have developed a deep learning model that transforms overwhelming brain data into clear trajectories, opening new possibilities for understanding thought, emotion, and neurological disease.

Robots are becoming a core building block in engineering and healthcare applications, altering the way many industries operate, and improving quality of life for everyone. With AI, robots are further given the ability to learn and adapt so that they can work collaboratively alongside humans and other robots in real-world environments. This industry brief provides a cross-section of key research – at HAI and across Stanford – that leverages AI methods into new algorithms for human robot interaction and robot navigation. Discover how researchers are designing intelligent robots that learn and adapt to human demonstration, and how they could be used to disrupt and create markets in a wide range of industries including manufacturing, healthcare, autonomous vehicles, and many more.

Robots are becoming a core building block in engineering and healthcare applications, altering the way many industries operate, and improving quality of life for everyone. With AI, robots are further given the ability to learn and adapt so that they can work collaboratively alongside humans and other robots in real-world environments. This industry brief provides a cross-section of key research – at HAI and across Stanford – that leverages AI methods into new algorithms for human robot interaction and robot navigation. Discover how researchers are designing intelligent robots that learn and adapt to human demonstration, and how they could be used to disrupt and create markets in a wide range of industries including manufacturing, healthcare, autonomous vehicles, and many more.
Health insurers and health care provider organizations are increasingly using artificial intelligence (AI) tools in prior authorization and claims processes. AI offers many potential benefits, but its adoption has raised concerns about the role of the “humans in the loop,” users’ understanding of AI, opacity of algorithmic determinations, underperformance in certain tasks, automation bias, and unintended social consequences. To date, institutional governance by insurers and providers has not fully met the challenge of ensuring responsible use. However, several steps could be taken to help realize the benefits of AI use while minimizing risks. Drawing on empirical work on AI use and our own ethical assessments of provider-facing tools as part of the AI governance process at Stanford Health Care, we examine why utilization review has attracted so much AI innovation and why it is challenging to ensure responsible use of AI. We conclude with several steps that could be taken to help realize the benefits of AI use while minimizing risks.
Health insurers and health care provider organizations are increasingly using artificial intelligence (AI) tools in prior authorization and claims processes. AI offers many potential benefits, but its adoption has raised concerns about the role of the “humans in the loop,” users’ understanding of AI, opacity of algorithmic determinations, underperformance in certain tasks, automation bias, and unintended social consequences. To date, institutional governance by insurers and providers has not fully met the challenge of ensuring responsible use. However, several steps could be taken to help realize the benefits of AI use while minimizing risks. Drawing on empirical work on AI use and our own ethical assessments of provider-facing tools as part of the AI governance process at Stanford Health Care, we examine why utilization review has attracted so much AI innovation and why it is challenging to ensure responsible use of AI. We conclude with several steps that could be taken to help realize the benefits of AI use while minimizing risks.
The Hoffman-Yee Research Grants are designed to address significant scientific, technical, or societal challenges requiring an interdisciplinary team and a bold approach.
These grants are made possible by a gift from philanthropists Reid Hoffman and Michelle Yee.
The Hoffman-Yee Research Grants are designed to address significant scientific, technical, or societal challenges requiring an interdisciplinary team and a bold approach.
These grants are made possible by a gift from philanthropists Reid Hoffman and Michelle Yee.

Stanford scholars respond to a federal RFC on evaluating AI-enabled medical devices, recommending policy interventions to help mitigate the harms of AI-powered chatbots used as therapists.

Stanford scholars respond to a federal RFC on evaluating AI-enabled medical devices, recommending policy interventions to help mitigate the harms of AI-powered chatbots used as therapists.

These models generate plausible timelines from historical patterns; without calibration and auditing, their “probabilities” may not reflect reality.
These models generate plausible timelines from historical patterns; without calibration and auditing, their “probabilities” may not reflect reality.


This industry brief focuses on AI research in healthcare and life sciences, with particular attention to its implications in a post COVID-19 world. Stanford HAI synthesize the latest from Stanford faculty across drug discovery, telehealth, ambient intelligence, operational excellence, medical imaging, augmented intelligence, and data and privacy. Read to learn more about how the adoption of AI may transform these applications.
This industry brief focuses on AI research in healthcare and life sciences, with particular attention to its implications in a post COVID-19 world. Stanford HAI synthesize the latest from Stanford faculty across drug discovery, telehealth, ambient intelligence, operational excellence, medical imaging, augmented intelligence, and data and privacy. Read to learn more about how the adoption of AI may transform these applications.

Advances in artificial intelligence technology offer unprecedented opportunities to improve health and medicine, from accelerating biomedical research to strengthening care delivery and patient outcomes.
Advances in artificial intelligence technology offer unprecedented opportunities to improve health and medicine, from accelerating biomedical research to strengthening care delivery and patient outcomes.

In this testimony presented to the U.S. Senate Committee on Health, Education, Labor, and Pensions hearing titled “AI’s Potential to Support Patients, Workers, Children, and Families,” Russ Altman highlights opportunities for congressional support to make AI applications for patient care and drug discovery stronger, safer, and human-centered.
In this testimony presented to the U.S. Senate Committee on Health, Education, Labor, and Pensions hearing titled “AI’s Potential to Support Patients, Workers, Children, and Families,” Russ Altman highlights opportunities for congressional support to make AI applications for patient care and drug discovery stronger, safer, and human-centered.


