This study aims to understand the impact of instabilities and turbulence arising from canopy mixing layers on wind-driven wildfire spread. Using an experimental flume (water) setup with model vegetation canopy and thermally buoyant plumes, we study the influence of canopy-induced shear and turbulence on the behavior of buoyant plume trajectories. Using the length of the canopy upstream of the plume source to vary the strength of the canopy turbulence, we observed behaviors of the plume trajectory under varying turbulence yet constant cross-flow conditions. Results indicate that increasing canopy turbulence corresponds to increased strength of vertical oscillatory motion and variability in the plume trajectory/position. Furthermore, we find that the canopy coherent structures characterized at the plume source set the intensity and frequency at which the plume oscillates. These perturbations then move longitudinally along the length of the plume at the speed of the free stream velocity. However, the buoyancy developed by the plume can resist this impact of the canopy structures. Due to these competing effects, the oscillatory behavior of plumes in canopy systems is observed more significantly in systems where the canopy turbulence is dominant. These effects also have an influence on the mixing and entrainment of the plumes. We offer scaling analyses to find flow regimes in which canopy induced turbulence would be relevant in plume dynamics.