Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
How Machine Learning is Transforming Drug Discovery | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
    • Subscribe to Email
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
news

How Machine Learning is Transforming Drug Discovery

Date
November 10, 2020
Topics
Machine Learning
Stocksy/Sergio Marcos

Daphne Koller, a veteran of AI, explains why she left academia for a chance to change the pharmaceutical industry.

In a world where a drug takes years and billions of dollars to develop, just one in 20 candidates makes it to market. Daphne Koller is betting artificial intelligence can change that dynamic.

Twenty years ago, when she first started using artificial intelligence to venture into medicine and biology, Koller was stymied by a lack of data. There wasn’t enough of it and what there was, was often not well suited to the problems she wanted to solve. Fast-forward 20 years, however, and both the quantity and quality of data, and the tools for studying biology, have advanced so dramatically that the adjunct professor of computer science at Stanford founded a company, insitro, that uses machine learning (a subspecialty of ​artificial intelligence) to explore the causes and potential treatments for some very serious diseases.

She tells bioengineer and Stanford Institute for Human-Centered AI associate director Russ Altman about the lessons she’s learned along the way, and the challenges and rewards of getting diverse teams of experts from many fields to speak the same language. It’s all on this episode of Stanford Engineering’s The Future of Everything podcast. Watch here, and subscribe to the podcast here.

 

 

Stanford HAI's mission is to advance AI research, education, policy and practice to improve the human condition. Learn more. 

Stocksy/Sergio Marcos
Share
Link copied to clipboard!
Contributor(s)
Stanford Engineering Staff
Related
  • The Future of Artificial Intelligence in Medicine and Imaging
    Andrew Myers
    Aug 26
    news

    Experts across disciplines examine the promise and opportunities in artificial intelligence in the medical sciences during a recent AIMI virtual conference.

Related News

AI Leaders Discuss How To Foster Responsible Innovation At TIME100 Roundtable In Davos
TIME
Jan 21, 2026
Media Mention

HAI Senior Fellow Yejin Choi discussed responsible AI model training at Davos, asking, “What if there could be an alternative form of intelligence that really learns … morals, human values from the get-go, as opposed to just training LLMs on the entirety of the internet, which actually includes the worst part of humanity, and then we then try to patch things up by doing ‘alignment’?” 

Media Mention
Your browser does not support the video tag.

AI Leaders Discuss How To Foster Responsible Innovation At TIME100 Roundtable In Davos

TIME
Ethics, Equity, InclusionGenerative AIMachine LearningNatural Language ProcessingJan 21

HAI Senior Fellow Yejin Choi discussed responsible AI model training at Davos, asking, “What if there could be an alternative form of intelligence that really learns … morals, human values from the get-go, as opposed to just training LLMs on the entirety of the internet, which actually includes the worst part of humanity, and then we then try to patch things up by doing ‘alignment’?” 

Stanford’s Yejin Choi & Axios’ Ina Fried
Axios
Jan 19, 2026
Media Mention

Axios chief technology correspondent Ina Fried speaks to HAI Senior Fellow Yejin Choi at Axios House in Davos during the World Economic Forum.

Media Mention
Your browser does not support the video tag.

Stanford’s Yejin Choi & Axios’ Ina Fried

Axios
Energy, EnvironmentMachine LearningGenerative AIEthics, Equity, InclusionJan 19

Axios chief technology correspondent Ina Fried speaks to HAI Senior Fellow Yejin Choi at Axios House in Davos during the World Economic Forum.

Spatial Intelligence Is AI’s Next Frontier
TIME
Dec 11, 2025
Media Mention

"This is AI’s next frontier, and why 2025 was such a pivotal year," writes HAI Co-Director Fei-Fei Li.

Media Mention
Your browser does not support the video tag.

Spatial Intelligence Is AI’s Next Frontier

TIME
Computer VisionMachine LearningGenerative AIDec 11

"This is AI’s next frontier, and why 2025 was such a pivotal year," writes HAI Co-Director Fei-Fei Li.