Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.
Sign Up For Latest News
Learn about the latest advances in machine learning that allow systems to learn and improve over time.
NNetNav learns how to navigate websites by mimicking childhood learning through exploration.
NNetNav learns how to navigate websites by mimicking childhood learning through exploration.
Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.
Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.
Since the November 2022 debut of ChatGPT, language models have been all over the news. But as people use chatbots—to write stories and look up recipes, to make travel plans and even further their real estate business—journalists, policymakers, and members of the public are increasingly paying attention to the important question of whose opinions these language models reflect. In particular, one emerging concern is that AI-generated text may be able to influence our views, including political beliefs, without us realizing it. This brief introduces a quantitative framework that allows policymakers to evaluate the behavior of language models to assess what kinds of opinions they reflect.
Since the November 2022 debut of ChatGPT, language models have been all over the news. But as people use chatbots—to write stories and look up recipes, to make travel plans and even further their real estate business—journalists, policymakers, and members of the public are increasingly paying attention to the important question of whose opinions these language models reflect. In particular, one emerging concern is that AI-generated text may be able to influence our views, including political beliefs, without us realizing it. This brief introduces a quantitative framework that allows policymakers to evaluate the behavior of language models to assess what kinds of opinions they reflect.
A study led by Stanford HAI Faculty Fellow Johannes Eichstaedt reveals that large language models adapt their behavior to appear more likable when they are being studied, mirroring human tendencies to present favorably.
A study led by Stanford HAI Faculty Fellow Johannes Eichstaedt reveals that large language models adapt their behavior to appear more likable when they are being studied, mirroring human tendencies to present favorably.
Model-based reinforcement learning (MBRL) is a promising route to sampleefficient policy optimization. However, a known vulnerability of reconstructionbased MBRL consists of scenarios in which detailed aspects of the world are highly predictable, but irrelevant to learning a good policy. Such scenarios can lead the model to exhaust its capacity on meaningless content, at the cost of neglecting important environment dynamics. While existing approaches attempt to solve this problem, we highlight its continuing impact on leading MBRL methods —including DreamerV3 and DreamerPro — with a novel environment where background distractions are intricate, predictable, and useless for planning future actions. To address this challenge we develop a method for focusing the capacity of the world model through synergy of a pretrained segmentation model, a task-aware reconstruction loss, and adversarial learning. Our method outperforms a variety of other approaches designed to reduce the impact of distractors, and is an advance towards robust model-based reinforcement learning.
Model-based reinforcement learning (MBRL) is a promising route to sampleefficient policy optimization. However, a known vulnerability of reconstructionbased MBRL consists of scenarios in which detailed aspects of the world are highly predictable, but irrelevant to learning a good policy. Such scenarios can lead the model to exhaust its capacity on meaningless content, at the cost of neglecting important environment dynamics. While existing approaches attempt to solve this problem, we highlight its continuing impact on leading MBRL methods —including DreamerV3 and DreamerPro — with a novel environment where background distractions are intricate, predictable, and useless for planning future actions. To address this challenge we develop a method for focusing the capacity of the world model through synergy of a pretrained segmentation model, a task-aware reconstruction loss, and adversarial learning. Our method outperforms a variety of other approaches designed to reduce the impact of distractors, and is an advance towards robust model-based reinforcement learning.
The computer scientist will invest in SAIL’s vibrant research community as it builds the future of technical AI.
The computer scientist will invest in SAIL’s vibrant research community as it builds the future of technical AI.
AI driven by deep learning is transforming many aspects of science and technology. The enormous success of deep learning stems from its unique capability of extracting essential features from Big Data for decision-making. However, the feature extraction and hidden representations in deep neural networks (DNNs) remain inexplicable, primarily because of lack of technical tools to comprehend and interrogate the feature space data. The main hurdle here is that the feature data are often noisy in nature, complex in structure, and huge in size and dimensionality, making it intractable for existing techniques to analyze the data reliably. In this work, we develop a computational framework named contrastive feature analysis (CFA) to facilitate the exploration of the DNN feature space and improve the performance of AI. By utilizing the interaction relations among the features and incorporating a novel data-driven kernel formation strategy into the feature analysis pipeline, CFA mitigates the limitations of traditional approaches and provides an urgently needed solution for the analysis of feature space data. The technique allows feature data exploration in unsupervised, semi-supervised and supervised formats to address different needs of downstream applications. The potential of CFA and its applications for pruning of neural network architectures are demonstrated using several state-of-the-art networks and well-annotated datasets across different disciplines.
AI driven by deep learning is transforming many aspects of science and technology. The enormous success of deep learning stems from its unique capability of extracting essential features from Big Data for decision-making. However, the feature extraction and hidden representations in deep neural networks (DNNs) remain inexplicable, primarily because of lack of technical tools to comprehend and interrogate the feature space data. The main hurdle here is that the feature data are often noisy in nature, complex in structure, and huge in size and dimensionality, making it intractable for existing techniques to analyze the data reliably. In this work, we develop a computational framework named contrastive feature analysis (CFA) to facilitate the exploration of the DNN feature space and improve the performance of AI. By utilizing the interaction relations among the features and incorporating a novel data-driven kernel formation strategy into the feature analysis pipeline, CFA mitigates the limitations of traditional approaches and provides an urgently needed solution for the analysis of feature space data. The technique allows feature data exploration in unsupervised, semi-supervised and supervised formats to address different needs of downstream applications. The potential of CFA and its applications for pruning of neural network architectures are demonstrated using several state-of-the-art networks and well-annotated datasets across different disciplines.
In this brief, Stanford scholars introduce Holistic Evaluation of Language Models (HELM) as a framework to evaluate commercial application of AI use cases.
In this brief, Stanford scholars introduce Holistic Evaluation of Language Models (HELM) as a framework to evaluate commercial application of AI use cases.
Stanford researchers uncover the key factors behind successful AI development in the workplace.
Stanford researchers uncover the key factors behind successful AI development in the workplace.
Interventions on model-internal states are fundamental operations in many areas of AI, including model editing, steering, robustness, and interpretability. To facilitate such research, we introduce pyvene, an open-source Python library that supports customizable interventions on a range of different PyTorch modules. pyvene supports complex intervention schemes with an intuitive configuration format, and its interventions can be static or include trainable parameters. We show how pyvene provides a unified and extensible framework for performing interventions on neural models and sharing the intervened upon models with others. We illustrate the power of the library via interpretability analyses using causal abstraction and knowledge localization. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at ‘https://github.com/stanfordnlp/pyvene‘.
Interventions on model-internal states are fundamental operations in many areas of AI, including model editing, steering, robustness, and interpretability. To facilitate such research, we introduce pyvene, an open-source Python library that supports customizable interventions on a range of different PyTorch modules. pyvene supports complex intervention schemes with an intuitive configuration format, and its interventions can be static or include trainable parameters. We show how pyvene provides a unified and extensible framework for performing interventions on neural models and sharing the intervened upon models with others. We illustrate the power of the library via interpretability analyses using causal abstraction and knowledge localization. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at ‘https://github.com/stanfordnlp/pyvene‘.