Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
The Global AI Vibrancy Tool 2024 | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
research

The Global AI Vibrancy Tool 2024

Date
November 14, 2024
Topics
Democracy
Industry, Innovation
Government, Public Administration
Your browser does not support the video tag.
Read Paper
abstract

This methodological paper presents the latest iteration of the Global AI Vibrancy Tool, an interactive suite of visualizations designed to facilitate cross-country comparisons of AI vibrancy across 36 countries, using 42 indicators organized into 8 pillars. The tool offers customizable features that enable users to conduct in-depth country-level comparisons and longitudinal analyses of AI-related metrics.

Share
Link copied to clipboard!
Authors
  • headshot
    Loredana Fattorini
  • headshot
    Nestor Maslej
  • Ray Perrault
    Ray Perrault
  • Vanessa Parli
    Vanessa Parli
  • John Etchemendy
    John Etchemendy
  • Yoav Shoham
    Yoav Shoham
  • Katrina Ligett
    Katrina Ligett
Related
  • Loredana Fattorini
    Research Associate
    headshot

Related Publications

Embedding Democratic Values into Social Media AIs via Societal Objective Functions
Chenyan Jia, Michelle Lam, Michael S. Bernstein, Minh Chau Mai
Apr 26, 2024
Research
Your browser does not support the video tag.

Mounting evidence indicates that the artificial intelligence (AI) systems that rank our social media feeds bear nontrivial responsibility for amplifying partisan animosity: negative thoughts, feelings, and behaviors toward political out-groups. Can we design these AIs to consider democratic values such as mitigating partisan animosity as part of their objective functions? We introduce a method for translating established, vetted social scientific constructs into AI objective functions, which we term societal objective functions, and demonstrate the method with application to the political science construct of anti-democratic attitudes. Traditionally, we have lacked observable outcomes to use to train such models-however, the social sciences have developed survey instruments and qualitative codebooks for these constructs, and their precision facilitates translation into detailed prompts for large language models. We apply this method to create a democratic attitude model that estimates the extent to which a social media post promotes anti-democratic attitudes, and test this democratic attitude model across three studies. In Study 1, we first test the attitudinal and behavioral effectiveness of the intervention among US partisans (N=1,380) by manually annotating (alpha=.895) social media posts with anti-democratic attitude scores and testing several feed ranking conditions based on these scores. Removal (d=.20) and downranking feeds (d=.25) reduced participants' partisan animosity without compromising their experience and engagement. In Study 2, we scale up the manual labels by creating the democratic attitude model, finding strong agreement with manual labels (rho=.75). Finally, in Study 3, we replicate Study 1 using the democratic attitude model instead of manual labels to test its attitudinal and behavioral impact (N=558), and again find that the feed downranking using the societal objective function reduced partisan animosity (d=.25). This method presents a novel strategy to draw on social science theory and methods to mitigate societal harms in social media AIs.

Research
Your browser does not support the video tag.

Embedding Democratic Values into Social Media AIs via Societal Objective Functions

Chenyan Jia, Michelle Lam, Michael S. Bernstein, Minh Chau Mai
DemocracyApr 26

Mounting evidence indicates that the artificial intelligence (AI) systems that rank our social media feeds bear nontrivial responsibility for amplifying partisan animosity: negative thoughts, feelings, and behaviors toward political out-groups. Can we design these AIs to consider democratic values such as mitigating partisan animosity as part of their objective functions? We introduce a method for translating established, vetted social scientific constructs into AI objective functions, which we term societal objective functions, and demonstrate the method with application to the political science construct of anti-democratic attitudes. Traditionally, we have lacked observable outcomes to use to train such models-however, the social sciences have developed survey instruments and qualitative codebooks for these constructs, and their precision facilitates translation into detailed prompts for large language models. We apply this method to create a democratic attitude model that estimates the extent to which a social media post promotes anti-democratic attitudes, and test this democratic attitude model across three studies. In Study 1, we first test the attitudinal and behavioral effectiveness of the intervention among US partisans (N=1,380) by manually annotating (alpha=.895) social media posts with anti-democratic attitude scores and testing several feed ranking conditions based on these scores. Removal (d=.20) and downranking feeds (d=.25) reduced participants' partisan animosity without compromising their experience and engagement. In Study 2, we scale up the manual labels by creating the democratic attitude model, finding strong agreement with manual labels (rho=.75). Finally, in Study 3, we replicate Study 1 using the democratic attitude model instead of manual labels to test its attitudinal and behavioral impact (N=558), and again find that the feed downranking using the societal objective function reduced partisan animosity (d=.25). This method presents a novel strategy to draw on social science theory and methods to mitigate societal harms in social media AIs.

AI, Health, and Health Care Today and Tomorrow: The JAMA Summit Report on Artificial Intelligence
Tina Hernandez-Boussard, Michelle Mello, Nigam Shah, Co-authored by 50+ experts
Deep DiveOct 13, 2025
Research
Your browser does not support the video tag.
Research
Your browser does not support the video tag.

AI, Health, and Health Care Today and Tomorrow: The JAMA Summit Report on Artificial Intelligence

Tina Hernandez-Boussard, Michelle Mello, Nigam Shah, Co-authored by 50+ experts
HealthcareRegulation, Policy, GovernanceDeep DiveOct 13
Automated real-time assessment of intracranial hemorrhage detection AI using an ensembled monitoring model (EMM)
Zhongnan Fang, Andrew Johnston, Lina Cheuy, Hye Sun Na, Magdalini Paschali, Camila Gonzalez, Bonnie Armstrong, Arogya Koirala, Derrick Laurel, Andrew Walker Campion, Michael Iv, Akshay Chaudhari, David B. Larson
Deep DiveOct 13, 2025
Research
Your browser does not support the video tag.

Artificial intelligence (AI) tools for radiology are commonly unmonitored once deployed. The lack of real-time case-by-case assessments of AI prediction confidence requires users to independently distinguish between trustworthy and unreliable AI predictions, which increases cognitive burden, reduces productivity, and potentially leads to misdiagnoses. To address these challenges, we introduce Ensembled Monitoring Model (EMM), a framework inspired by clinical consensus practices using multiple expert reviews. Designed specifically for black-box commercial AI products, EMM operates independently without requiring access to internal AI components or intermediate outputs, while still providing robust confidence measurements. Using intracranial hemorrhage detection as our test case on a large, diverse dataset of 2919 studies, we demonstrate that EMM can successfully categorize confidence in the AI-generated prediction, suggest appropriate actions, and help physicians recognize low confidence scenarios, ultimately reducing cognitive burden. Importantly, we provide key technical considerations and best practices for successfully translating EMM into clinical settings.

Research
Your browser does not support the video tag.

Automated real-time assessment of intracranial hemorrhage detection AI using an ensembled monitoring model (EMM)

Zhongnan Fang, Andrew Johnston, Lina Cheuy, Hye Sun Na, Magdalini Paschali, Camila Gonzalez, Bonnie Armstrong, Arogya Koirala, Derrick Laurel, Andrew Walker Campion, Michael Iv, Akshay Chaudhari, David B. Larson
HealthcareRegulation, Policy, GovernanceDeep DiveOct 13

Artificial intelligence (AI) tools for radiology are commonly unmonitored once deployed. The lack of real-time case-by-case assessments of AI prediction confidence requires users to independently distinguish between trustworthy and unreliable AI predictions, which increases cognitive burden, reduces productivity, and potentially leads to misdiagnoses. To address these challenges, we introduce Ensembled Monitoring Model (EMM), a framework inspired by clinical consensus practices using multiple expert reviews. Designed specifically for black-box commercial AI products, EMM operates independently without requiring access to internal AI components or intermediate outputs, while still providing robust confidence measurements. Using intracranial hemorrhage detection as our test case on a large, diverse dataset of 2919 studies, we demonstrate that EMM can successfully categorize confidence in the AI-generated prediction, suggest appropriate actions, and help physicians recognize low confidence scenarios, ultimately reducing cognitive burden. Importantly, we provide key technical considerations and best practices for successfully translating EMM into clinical settings.

Developing mental health AI tools that improve care across different groups and contexts
Nicole Martinez-Martin
Deep DiveOct 10, 2025
Research
Your browser does not support the video tag.

In order to realize the potential of mental health AI applications to deliver improved care, a multipronged approach is needed, including representative AI datasets, research practices that reflect and anticipate potential sources of bias, stakeholder engagement, and equitable design practices.

Research
Your browser does not support the video tag.

Developing mental health AI tools that improve care across different groups and contexts

Nicole Martinez-Martin
HealthcareRegulation, Policy, GovernanceDeep DiveOct 10

In order to realize the potential of mental health AI applications to deliver improved care, a multipronged approach is needed, including representative AI datasets, research practices that reflect and anticipate potential sources of bias, stakeholder engagement, and equitable design practices.