Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.
Sign Up For Latest News

There is a “fierce urgency” to understand how AI works, says Stanford physicist Surya Ganguli, who is leading a project to bring the inner workings of AI to light through transparent, foundational research.
There is a “fierce urgency” to understand how AI works, says Stanford physicist Surya Ganguli, who is leading a project to bring the inner workings of AI to light through transparent, foundational research.
There is an urgent need to incorporate the perspectives of culturally diverse groups into AI developments. We present a novel conceptual framework for research that aims to expand, reimagine, and reground mainstream visions of AI using independent and interdependent cultural models of the self and the environment. Two survey studies support this framework and provide preliminary evidence that people apply their cultural models when imagining their ideal AI. Compared with European American respondents, Chinese respondents viewed it as less important to control AI and more important to connect with AI, and were more likely to prefer AI with capacities to influence. Reflecting both cultural models, findings from African American respondents resembled both European American and Chinese respondents. We discuss study limitations and future directions and highlight the need to develop culturally responsive and relevant AI to serve a broader segment of the world population.
There is an urgent need to incorporate the perspectives of culturally diverse groups into AI developments. We present a novel conceptual framework for research that aims to expand, reimagine, and reground mainstream visions of AI using independent and interdependent cultural models of the self and the environment. Two survey studies support this framework and provide preliminary evidence that people apply their cultural models when imagining their ideal AI. Compared with European American respondents, Chinese respondents viewed it as less important to control AI and more important to connect with AI, and were more likely to prefer AI with capacities to influence. Reflecting both cultural models, findings from African American respondents resembled both European American and Chinese respondents. We discuss study limitations and future directions and highlight the need to develop culturally responsive and relevant AI to serve a broader segment of the world population.


Despite limitations, advances in AI offer social science researchers the ability to simulate human subjects.
Despite limitations, advances in AI offer social science researchers the ability to simulate human subjects.

Abstract
Background: Digital phenotyping has seen a broad increase in application across clinical research; however, little research has implemented passive assessment approaches for suicide risk detection. There is a significant potential for a novel form of digital phenotyping, termed screenomics, which captures smartphone activity via screenshots.
Objective: This paper focuses on a comprehensive case review of 2 participants who reported past 1-month active suicidal ideation, detailing their passive (ie, obtained via screenomics screenshot capture) and active (ie, obtained via ecological momentary assessment [EMA]) risk profiles that culminated in suicidal crises and subsequent psychiatric hospitalizations. Through this analysis, we shed light on the timescale of risk processes as they unfold before hospitalization, as well as introduce the novel application of screenomics within the field of suicide research.
Methods: To underscore the potential benefits of screenomics in comprehending suicide risk, the analysis concentrates on a specific type of data gleaned from screenshots—text—captured prior to hospitalization, alongside self-reported EMA responses. Following a comprehensive baseline assessment, participants completed an intensive time sampling period. During this period, screenshots were collected every 5 seconds while one’s phone was in use for 35 days, and EMA data were collected 6 times a day for 28 days. In our analysis, we focus on the following: suicide-related content (obtained via screenshots and EMA), risk factors theoretically and empirically relevant to suicide risk (obtained via screenshots and EMA), and social content (obtained via screenshots).
Results: Our analysis revealed several key findings. First, there was a notable decrease in EMA compliance during suicidal crises, with both participants completing fewer EMAs in the days prior to hospitalization. This contrasted with an overall increase in phone usage leading up to hospitalization, which was particularly marked by heightened social use. Screenomics also captured prominent precipitating factors in each instance of suicidal crisis that were not well detected via self-report, specifically physical pain and loneliness.
Conclusions: Our preliminary findings underscore the potential of passively collected data in understanding and predicting suicidal crises. The vast number of screenshots from each participant offers a granular look into their daily digital interactions, shedding light on novel risks not captured via self-report alone. When combined with EMA assessments, screenomics provides a more comprehensive view of an individual’s psychological processes in the time leading up to a suicidal crisis.
Abstract
Background: Digital phenotyping has seen a broad increase in application across clinical research; however, little research has implemented passive assessment approaches for suicide risk detection. There is a significant potential for a novel form of digital phenotyping, termed screenomics, which captures smartphone activity via screenshots.
Objective: This paper focuses on a comprehensive case review of 2 participants who reported past 1-month active suicidal ideation, detailing their passive (ie, obtained via screenomics screenshot capture) and active (ie, obtained via ecological momentary assessment [EMA]) risk profiles that culminated in suicidal crises and subsequent psychiatric hospitalizations. Through this analysis, we shed light on the timescale of risk processes as they unfold before hospitalization, as well as introduce the novel application of screenomics within the field of suicide research.
Methods: To underscore the potential benefits of screenomics in comprehending suicide risk, the analysis concentrates on a specific type of data gleaned from screenshots—text—captured prior to hospitalization, alongside self-reported EMA responses. Following a comprehensive baseline assessment, participants completed an intensive time sampling period. During this period, screenshots were collected every 5 seconds while one’s phone was in use for 35 days, and EMA data were collected 6 times a day for 28 days. In our analysis, we focus on the following: suicide-related content (obtained via screenshots and EMA), risk factors theoretically and empirically relevant to suicide risk (obtained via screenshots and EMA), and social content (obtained via screenshots).
Results: Our analysis revealed several key findings. First, there was a notable decrease in EMA compliance during suicidal crises, with both participants completing fewer EMAs in the days prior to hospitalization. This contrasted with an overall increase in phone usage leading up to hospitalization, which was particularly marked by heightened social use. Screenomics also captured prominent precipitating factors in each instance of suicidal crisis that were not well detected via self-report, specifically physical pain and loneliness.
Conclusions: Our preliminary findings underscore the potential of passively collected data in understanding and predicting suicidal crises. The vast number of screenshots from each participant offers a granular look into their daily digital interactions, shedding light on novel risks not captured via self-report alone. When combined with EMA assessments, screenomics provides a more comprehensive view of an individual’s psychological processes in the time leading up to a suicidal crisis.