Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
Vision-based Estimation of MDS-UPDRS Gait Scoresfor Assessing Parkinson’s Disease Motor Severity | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
research

Vision-based Estimation of MDS-UPDRS Gait Scoresfor Assessing Parkinson’s Disease Motor Severity

Date
November 18, 2020
Topics
Healthcare
Read Paper
abstract

Parkinson’s disease (PD) is a progressive neurological disorder primarily affecting motor function resulting in tremor at rest, rigidity, bradykinesia, and postural instability. The physical severity of PD impairments can be quantified through the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), a widely used clinical rating scale. Accurate and quantitative assessment of disease progression is critical to developing a treatment that slows or stops further advancement of the disease. Prior work has mainly focused on dopamine transport neuroimaging for diagnosis or costly and intrusive wearables evaluating motor impairments. For the first time, we propose a computer vision-based model that observes non-intrusive video recordings of individuals, extracts their 3D body skeletons, tracks them through time, and classifies the movements according to the MDS-UPDRS gait scores. Experimental results show that our proposed method performs significantly better than chance and competing methods with an F1-score of 0.83 and a balanced accuracy of 81%. This is the first benchmark for classifying PD patients based on MDS-UPDRS gait severity and could be an objective biomarker for disease severity. Our work demonstrates how computer-assisted technologies can be used to non-intrusively monitor patients and their motor impairments.

Share
Link copied to clipboard!
Authors
  • Mandy Lu
  • Kathleen Poston
  • Adolf Pfefferbaum
  • Edith Sullivan
  • fei fei li headshot
    Fei-Fei Li
  • Kilian M. Pohl
  • Juan Carlos Niebles
    Juan Carlos Niebles
  • Ehsan Adeli
    Ehsan Adeli

Related Publications

AI, Health, and Health Care Today and Tomorrow: The JAMA Summit Report on Artificial Intelligence
Tina Hernandez-Boussard, Michelle Mello, Nigam Shah, Co-authored by 50+ experts
Deep DiveOct 13, 2025
Research
Your browser does not support the video tag.
Research
Your browser does not support the video tag.

AI, Health, and Health Care Today and Tomorrow: The JAMA Summit Report on Artificial Intelligence

Tina Hernandez-Boussard, Michelle Mello, Nigam Shah, Co-authored by 50+ experts
HealthcareRegulation, Policy, GovernanceDeep DiveOct 13
Automated real-time assessment of intracranial hemorrhage detection AI using an ensembled monitoring model (EMM)
Zhongnan Fang, Andrew Johnston, Lina Cheuy, Hye Sun Na, Magdalini Paschali, Camila Gonzalez, Bonnie Armstrong, Arogya Koirala, Derrick Laurel, Andrew Walker Campion, Michael Iv, Akshay Chaudhari, David B. Larson
Deep DiveOct 13, 2025
Research
Your browser does not support the video tag.

Artificial intelligence (AI) tools for radiology are commonly unmonitored once deployed. The lack of real-time case-by-case assessments of AI prediction confidence requires users to independently distinguish between trustworthy and unreliable AI predictions, which increases cognitive burden, reduces productivity, and potentially leads to misdiagnoses. To address these challenges, we introduce Ensembled Monitoring Model (EMM), a framework inspired by clinical consensus practices using multiple expert reviews. Designed specifically for black-box commercial AI products, EMM operates independently without requiring access to internal AI components or intermediate outputs, while still providing robust confidence measurements. Using intracranial hemorrhage detection as our test case on a large, diverse dataset of 2919 studies, we demonstrate that EMM can successfully categorize confidence in the AI-generated prediction, suggest appropriate actions, and help physicians recognize low confidence scenarios, ultimately reducing cognitive burden. Importantly, we provide key technical considerations and best practices for successfully translating EMM into clinical settings.

Research
Your browser does not support the video tag.

Automated real-time assessment of intracranial hemorrhage detection AI using an ensembled monitoring model (EMM)

Zhongnan Fang, Andrew Johnston, Lina Cheuy, Hye Sun Na, Magdalini Paschali, Camila Gonzalez, Bonnie Armstrong, Arogya Koirala, Derrick Laurel, Andrew Walker Campion, Michael Iv, Akshay Chaudhari, David B. Larson
HealthcareRegulation, Policy, GovernanceDeep DiveOct 13

Artificial intelligence (AI) tools for radiology are commonly unmonitored once deployed. The lack of real-time case-by-case assessments of AI prediction confidence requires users to independently distinguish between trustworthy and unreliable AI predictions, which increases cognitive burden, reduces productivity, and potentially leads to misdiagnoses. To address these challenges, we introduce Ensembled Monitoring Model (EMM), a framework inspired by clinical consensus practices using multiple expert reviews. Designed specifically for black-box commercial AI products, EMM operates independently without requiring access to internal AI components or intermediate outputs, while still providing robust confidence measurements. Using intracranial hemorrhage detection as our test case on a large, diverse dataset of 2919 studies, we demonstrate that EMM can successfully categorize confidence in the AI-generated prediction, suggest appropriate actions, and help physicians recognize low confidence scenarios, ultimately reducing cognitive burden. Importantly, we provide key technical considerations and best practices for successfully translating EMM into clinical settings.

Developing mental health AI tools that improve care across different groups and contexts
Nicole Martinez-Martin
Deep DiveOct 10, 2025
Research
Your browser does not support the video tag.

In order to realize the potential of mental health AI applications to deliver improved care, a multipronged approach is needed, including representative AI datasets, research practices that reflect and anticipate potential sources of bias, stakeholder engagement, and equitable design practices.

Research
Your browser does not support the video tag.

Developing mental health AI tools that improve care across different groups and contexts

Nicole Martinez-Martin
HealthcareRegulation, Policy, GovernanceDeep DiveOct 10

In order to realize the potential of mental health AI applications to deliver improved care, a multipronged approach is needed, including representative AI datasets, research practices that reflect and anticipate potential sources of bias, stakeholder engagement, and equitable design practices.

Ethical Obligations to Inform Patients About Use of AI Tools
Michelle Mello, Danton Char, Sonnet H. Xu
Deep DiveJul 21, 2025
Research
Your browser does not support the video tag.

Permeation of artificial intelligence (AI) tools into health care tests traditional understandings of what patients should be told about their care. Despite the general importance of informed consent, decision support tools (eg, automatic electrocardiogram readers, rule-based risk classifiers, and UpToDate summaries) are not usually discussed with patients even though they affect treatment decisions. Should AI tools be treated similarly? The legal doctrine of informed consent requires disclosing information that is material to a reasonable patient’s decision to accept a health care service, and evidence suggests that many patients would think differently about care if they knew it was guided by AI. In recent surveys, 60% of US adults said they would be uncomfortable with their physician relying on AI,1 70% to 80% had low expectations AI would improve important aspects of their care,2 only one-third trusted health care systems to use AI responsibly,3 and 63% said it was very true that they would want to be notified about use of AI in their care.

Research
Your browser does not support the video tag.

Ethical Obligations to Inform Patients About Use of AI Tools

Michelle Mello, Danton Char, Sonnet H. Xu
HealthcareRegulation, Policy, GovernanceDeep DiveJul 21

Permeation of artificial intelligence (AI) tools into health care tests traditional understandings of what patients should be told about their care. Despite the general importance of informed consent, decision support tools (eg, automatic electrocardiogram readers, rule-based risk classifiers, and UpToDate summaries) are not usually discussed with patients even though they affect treatment decisions. Should AI tools be treated similarly? The legal doctrine of informed consent requires disclosing information that is material to a reasonable patient’s decision to accept a health care service, and evidence suggests that many patients would think differently about care if they knew it was guided by AI. In recent surveys, 60% of US adults said they would be uncomfortable with their physician relying on AI,1 70% to 80% had low expectations AI would improve important aspects of their care,2 only one-third trusted health care systems to use AI responsibly,3 and 63% said it was very true that they would want to be notified about use of AI in their care.