Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
LABOR-LLM: Language-Based Occupational Representations with Large Language Models | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
    • Subscribe to Email
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
research

LABOR-LLM: Language-Based Occupational Representations with Large Language Models

Date
December 11, 2024
Topics
Foundation Models
Natural Language Processing
Your browser does not support the video tag.
Read Paper
abstract

Vafa et al. (2024) introduced a transformer-based econometric model, CAREER, that predicts a worker’s next job as a function of career history (an “occupation model”). CAREER was initially estimated (“pre-trained”) using a large, unrepresentative resume dataset, which served as a “foundation model,” and parameter estimation was continued (“fine-tuned”) using data from a representative survey. CAREER had better predictive performance than benchmarks. This paper considers an alternative where the resume-based foundation model is replaced by a large language model (LLM). We convert tabular data from the survey into text files that resemble resumes and fine-tune the LLMs using these text files with the objective to predict the next token (word). The resulting fine-tuned LLM is used as an input to an occupation model. Its predictive performance surpasses all prior models. We demonstrate the value of fine-tuning and further show that by adding more career data from a different population, fine-tuning smaller LLMs surpasses the performance of fine-tuning larger models.

Share
Link copied to clipboard!
Authors
  • Susan Athey
    Susan Athey
  • Herman Brunborg
  • Tianyu Du
  • Ayush Kanodia
    Ayush Kanodia
  • Keyon Vafa
Related
  • Closed
    Seed Research Grants
    Applications closed on September 15, 2025

    Designed to support new, ambitious, and speculative ideas with the objective of getting initial results

Related Publications

The Promise and Perils of Artificial Intelligence in Advancing Participatory Science and Health Equity in Public Health
Abby C King, Zakaria N Doueiri, Ankita Kaulberg, Lisa Goldman Rosas
Feb 14, 2025
Research
Your browser does not support the video tag.

Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.

Research
Your browser does not support the video tag.

The Promise and Perils of Artificial Intelligence in Advancing Participatory Science and Health Equity in Public Health

Abby C King, Zakaria N Doueiri, Ankita Kaulberg, Lisa Goldman Rosas
Foundation ModelsGenerative AIMachine LearningNatural Language ProcessingSciences (Social, Health, Biological, Physical)HealthcareFeb 14

Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.

Policy-Shaped Prediction: Avoiding Distractions in Model-Based Reinforcement Learning
Nicholas Haber, Miles Huston, Isaac Kauvar
Dec 13, 2024
Research
Your browser does not support the video tag.

Model-based reinforcement learning (MBRL) is a promising route to sampleefficient policy optimization. However, a known vulnerability of reconstructionbased MBRL consists of scenarios in which detailed aspects of the world are highly predictable, but irrelevant to learning a good policy. Such scenarios can lead the model to exhaust its capacity on meaningless content, at the cost of neglecting important environment dynamics. While existing approaches attempt to solve this problem, we highlight its continuing impact on leading MBRL methods —including DreamerV3 and DreamerPro — with a novel environment where background distractions are intricate, predictable, and useless for planning future actions. To address this challenge we develop a method for focusing the capacity of the world model through synergy of a pretrained segmentation model, a task-aware reconstruction loss, and adversarial learning. Our method outperforms a variety of other approaches designed to reduce the impact of distractors, and is an advance towards robust model-based reinforcement learning.

Research
Your browser does not support the video tag.

Policy-Shaped Prediction: Avoiding Distractions in Model-Based Reinforcement Learning

Nicholas Haber, Miles Huston, Isaac Kauvar
Machine LearningFoundation ModelsDec 13

Model-based reinforcement learning (MBRL) is a promising route to sampleefficient policy optimization. However, a known vulnerability of reconstructionbased MBRL consists of scenarios in which detailed aspects of the world are highly predictable, but irrelevant to learning a good policy. Such scenarios can lead the model to exhaust its capacity on meaningless content, at the cost of neglecting important environment dynamics. While existing approaches attempt to solve this problem, we highlight its continuing impact on leading MBRL methods —including DreamerV3 and DreamerPro — with a novel environment where background distractions are intricate, predictable, and useless for planning future actions. To address this challenge we develop a method for focusing the capacity of the world model through synergy of a pretrained segmentation model, a task-aware reconstruction loss, and adversarial learning. Our method outperforms a variety of other approaches designed to reduce the impact of distractors, and is an advance towards robust model-based reinforcement learning.

Optimizing Instructions and Demonstrations for Multi-Stage Language Model Programs
Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia, Omar Khattab
Nov 14, 2024
Research
Your browser does not support the video tag.

Language Model Programs, i.e. sophisticated pipelines of modular language model (LM) calls, are increasingly advancing NLP tasks, but they require crafting prompts that are jointly effective for all modules. We study prompt optimization for LM programs, i.e. how to update these prompts to maximize a downstream metric without access to module-level labels or gradients. To make this tractable, we factorize our problem into optimizing the free-form instructions and few-shot demonstrations of every module and introduce several strategies to craft task-grounded instructions and navigate credit assignment across modules. Our strategies include (i) program- and data-aware techniques for proposing effective instructions, (ii) a stochastic mini-batch evaluation function for learning a surrogate model of our objective, and (iii) a meta-optimization procedure in which we refine how LMs construct proposals over time. Using these insights we develop MIPRO, a novel algorithm for optimizing LM programs. MIPRO outperforms baseline optimizers on five of seven diverse multi-stage LM programs using a best-in-class open-source model (Llama-3-8B), by as high as 13% accuracy. We have released our new optimizers and benchmark in DSPy at [http://dspy.ai](http://dspy.ai).

Research
Your browser does not support the video tag.

Optimizing Instructions and Demonstrations for Multi-Stage Language Model Programs

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia, Omar Khattab
Natural Language ProcessingNov 14

Language Model Programs, i.e. sophisticated pipelines of modular language model (LM) calls, are increasingly advancing NLP tasks, but they require crafting prompts that are jointly effective for all modules. We study prompt optimization for LM programs, i.e. how to update these prompts to maximize a downstream metric without access to module-level labels or gradients. To make this tractable, we factorize our problem into optimizing the free-form instructions and few-shot demonstrations of every module and introduce several strategies to craft task-grounded instructions and navigate credit assignment across modules. Our strategies include (i) program- and data-aware techniques for proposing effective instructions, (ii) a stochastic mini-batch evaluation function for learning a surrogate model of our objective, and (iii) a meta-optimization procedure in which we refine how LMs construct proposals over time. Using these insights we develop MIPRO, a novel algorithm for optimizing LM programs. MIPRO outperforms baseline optimizers on five of seven diverse multi-stage LM programs using a best-in-class open-source model (Llama-3-8B), by as high as 13% accuracy. We have released our new optimizers and benchmark in DSPy at [http://dspy.ai](http://dspy.ai).

ReMix: Optimizing Data Mixtures for Large Scale Imitation Learning
Joey Hejna, Chethan Anand Bhateja, Yichen Jiang, Karl Pertsch, Dorsa Sadigh
Sep 05, 2024
Research
Your browser does not support the video tag.

Increasingly large robotics datasets are being collected to train larger foundation models in robotics. However, despite the fact that data selection has been of utmost importance to scaling in vision and natural language processing (NLP), little work in robotics has questioned what data such models should actually be trained on. In this work we investigate how to weigh different subsets or "domains'' of robotics datasets during pre-training to maximize worst-case performance across all possible downstream domains using distributionally robust optimization (DRO). Unlike in NLP, we find that these methods are hard to apply out of the box due to varying action spaces and dynamics across robots. Our method, ReMix, employs early stopping and action normalization and discretization to counteract these issues. Through extensive experimentation on both the Bridge and OpenX datasets, we demonstrate that data curation can have an outsized impact on downstream performance. Specifically, domain weights learned by ReMix outperform uniform weights by over 40% on average and human-selected weights by over 20% on datasets used to train the RT-X models.

Research
Your browser does not support the video tag.

ReMix: Optimizing Data Mixtures for Large Scale Imitation Learning

Joey Hejna, Chethan Anand Bhateja, Yichen Jiang, Karl Pertsch, Dorsa Sadigh
Computer VisionRoboticsNatural Language ProcessingSep 05

Increasingly large robotics datasets are being collected to train larger foundation models in robotics. However, despite the fact that data selection has been of utmost importance to scaling in vision and natural language processing (NLP), little work in robotics has questioned what data such models should actually be trained on. In this work we investigate how to weigh different subsets or "domains'' of robotics datasets during pre-training to maximize worst-case performance across all possible downstream domains using distributionally robust optimization (DRO). Unlike in NLP, we find that these methods are hard to apply out of the box due to varying action spaces and dynamics across robots. Our method, ReMix, employs early stopping and action normalization and discretization to counteract these issues. Through extensive experimentation on both the Bridge and OpenX datasets, we demonstrate that data curation can have an outsized impact on downstream performance. Specifically, domain weights learned by ReMix outperform uniform weights by over 40% on average and human-selected weights by over 20% on datasets used to train the RT-X models.