Stanford
University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility
© Stanford University.  Stanford, California 94305.
Optimizing Instructions and Demonstrations for Multi-Stage Language Model Programs | Stanford HAI

Stay Up To Date

Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.

Sign Up For Latest News

Navigate
  • About
  • Events
  • Careers
  • Search
Participate
  • Get Involved
  • Support HAI
  • Contact Us
Skip to content
  • About

    • About
    • People
    • Get Involved with HAI
    • Support HAI
  • Research

    • Research
    • Fellowship Programs
    • Grants
    • Student Affinity Groups
    • Centers & Labs
    • Research Publications
    • Research Partners
  • Education

    • Education
    • Executive and Professional Education
    • Government and Policymakers
    • K-12
    • Stanford Students
  • Policy

    • Policy
    • Policy Publications
    • Policymaker Education
    • Student Opportunities
  • AI Index

    • AI Index
    • AI Index Report
    • Global Vibrancy Tool
    • People
  • News
  • Events
  • Industry
  • Centers & Labs
research

Optimizing Instructions and Demonstrations for Multi-Stage Language Model Programs

Date
November 14, 2024
Topics
Natural Language Processing
Your browser does not support the video tag.
Read Paper
abstract

Language Model Programs, i.e. sophisticated pipelines of modular language model (LM) calls, are increasingly advancing NLP tasks, but they require crafting prompts that are jointly effective for all modules. We study prompt optimization for LM programs, i.e. how to update these prompts to maximize a downstream metric without access to module-level labels or gradients. To make this tractable, we factorize our problem into optimizing the free-form instructions and few-shot demonstrations of every module and introduce several strategies to craft task-grounded instructions and navigate credit assignment across modules. Our strategies include (i) program- and data-aware techniques for proposing effective instructions, (ii) a stochastic mini-batch evaluation function for learning a surrogate model of our objective, and (iii) a meta-optimization procedure in which we refine how LMs construct proposals over time. Using these insights we develop MIPRO, a novel algorithm for optimizing LM programs. MIPRO outperforms baseline optimizers on five of seven diverse multi-stage LM programs using a best-in-class open-source model (Llama-3-8B), by as high as 13% accuracy. We have released our new optimizers and benchmark in DSPy at [http://dspy.ai](http://dspy.ai).

Share
Link copied to clipboard!
Authors
  • Krista Opsahl-Ong
  • Michael J Ryan
  • Josh Purtell
  • David Broman
  • Christopher Potts
    Christopher Potts
  • Matei Zaharia
    Matei Zaharia
  • Omar Khattab
Related
  • Closed
    Hoffman-Yee Research Grants
    Call for proposals will open in Winter 2025

    The Hoffman-Yee Research Grants are designed to address significant scientific, technical, or societal challenges requiring an interdisciplinary team and a bold approach.

    These grants are made possible by a gift from philanthropists Reid Hoffman and Michelle Yee.

Related Publications

The Promise and Perils of Artificial Intelligence in Advancing Participatory Science and Health Equity in Public Health
Abby C King, Zakaria N Doueiri, Ankita Kaulberg, Lisa Goldman Rosas
Feb 14, 2025
Research
Your browser does not support the video tag.

Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.

Research
Your browser does not support the video tag.

The Promise and Perils of Artificial Intelligence in Advancing Participatory Science and Health Equity in Public Health

Abby C King, Zakaria N Doueiri, Ankita Kaulberg, Lisa Goldman Rosas
Foundation ModelsGenerative AIMachine LearningNatural Language ProcessingSciences (Social, Health, Biological, Physical)HealthcareFeb 14

Current societal trends reflect an increased mistrust in science and a lowered civic engagement that threaten to impair research that is foundational for ensuring public health and advancing health equity. One effective countermeasure to these trends lies in community-facing citizen science applications to increase public participation in scientific research, making this field an important target for artificial intelligence (AI) exploration. We highlight potentially promising citizen science AI applications that extend beyond individual use to the community level, including conversational large language models, text-to-image generative AI tools, descriptive analytics for analyzing integrated macro- and micro-level data, and predictive analytics. The novel adaptations of AI technologies for community-engaged participatory research also bring an array of potential risks. We highlight possible negative externalities and mitigations for some of the potential ethical and societal challenges in this field.

LABOR-LLM: Language-Based Occupational Representations with Large Language Models
Susan Athey, Herman Brunborg, Tianyu Du, Ayush Kanodia, Keyon Vafa
Dec 11, 2024
Research
Your browser does not support the video tag.

Vafa et al. (2024) introduced a transformer-based econometric model, CAREER, that predicts a worker’s next job as a function of career history (an “occupation model”). CAREER was initially estimated (“pre-trained”) using a large, unrepresentative resume dataset, which served as a “foundation model,” and parameter estimation was continued (“fine-tuned”) using data from a representative survey. CAREER had better predictive performance than benchmarks. This paper considers an alternative where the resume-based foundation model is replaced by a large language model (LLM). We convert tabular data from the survey into text files that resemble resumes and fine-tune the LLMs using these text files with the objective to predict the next token (word). The resulting fine-tuned LLM is used as an input to an occupation model. Its predictive performance surpasses all prior models. We demonstrate the value of fine-tuning and further show that by adding more career data from a different population, fine-tuning smaller LLMs surpasses the performance of fine-tuning larger models.

Research
Your browser does not support the video tag.

LABOR-LLM: Language-Based Occupational Representations with Large Language Models

Susan Athey, Herman Brunborg, Tianyu Du, Ayush Kanodia, Keyon Vafa
Foundation ModelsNatural Language ProcessingDec 11

Vafa et al. (2024) introduced a transformer-based econometric model, CAREER, that predicts a worker’s next job as a function of career history (an “occupation model”). CAREER was initially estimated (“pre-trained”) using a large, unrepresentative resume dataset, which served as a “foundation model,” and parameter estimation was continued (“fine-tuned”) using data from a representative survey. CAREER had better predictive performance than benchmarks. This paper considers an alternative where the resume-based foundation model is replaced by a large language model (LLM). We convert tabular data from the survey into text files that resemble resumes and fine-tune the LLMs using these text files with the objective to predict the next token (word). The resulting fine-tuned LLM is used as an input to an occupation model. Its predictive performance surpasses all prior models. We demonstrate the value of fine-tuning and further show that by adding more career data from a different population, fine-tuning smaller LLMs surpasses the performance of fine-tuning larger models.

ReMix: Optimizing Data Mixtures for Large Scale Imitation Learning
Joey Hejna, Chethan Anand Bhateja, Yichen Jiang, Karl Pertsch, Dorsa Sadigh
Sep 05, 2024
Research
Your browser does not support the video tag.

Increasingly large robotics datasets are being collected to train larger foundation models in robotics. However, despite the fact that data selection has been of utmost importance to scaling in vision and natural language processing (NLP), little work in robotics has questioned what data such models should actually be trained on. In this work we investigate how to weigh different subsets or "domains'' of robotics datasets during pre-training to maximize worst-case performance across all possible downstream domains using distributionally robust optimization (DRO). Unlike in NLP, we find that these methods are hard to apply out of the box due to varying action spaces and dynamics across robots. Our method, ReMix, employs early stopping and action normalization and discretization to counteract these issues. Through extensive experimentation on both the Bridge and OpenX datasets, we demonstrate that data curation can have an outsized impact on downstream performance. Specifically, domain weights learned by ReMix outperform uniform weights by over 40% on average and human-selected weights by over 20% on datasets used to train the RT-X models.

Research
Your browser does not support the video tag.

ReMix: Optimizing Data Mixtures for Large Scale Imitation Learning

Joey Hejna, Chethan Anand Bhateja, Yichen Jiang, Karl Pertsch, Dorsa Sadigh
Computer VisionRoboticsNatural Language ProcessingSep 05

Increasingly large robotics datasets are being collected to train larger foundation models in robotics. However, despite the fact that data selection has been of utmost importance to scaling in vision and natural language processing (NLP), little work in robotics has questioned what data such models should actually be trained on. In this work we investigate how to weigh different subsets or "domains'' of robotics datasets during pre-training to maximize worst-case performance across all possible downstream domains using distributionally robust optimization (DRO). Unlike in NLP, we find that these methods are hard to apply out of the box due to varying action spaces and dynamics across robots. Our method, ReMix, employs early stopping and action normalization and discretization to counteract these issues. Through extensive experimentation on both the Bridge and OpenX datasets, we demonstrate that data curation can have an outsized impact on downstream performance. Specifically, domain weights learned by ReMix outperform uniform weights by over 40% on average and human-selected weights by over 20% on datasets used to train the RT-X models.

RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations
Christopher Potts, Jing Huang, Zhengxuan Wu, Mor Geva, Atticus Geiger
Aug 14, 2024
Research
Your browser does not support the video tag.

Individual neurons participate in the representation of multiple high-level concepts. To what extent can different interpretability methods successfully disentangle these roles? To help address this question, we introduce RAVEL (Resolving Attribute–Value Entanglements in Language Models), a dataset that enables tightly controlled, quantitative comparisons between a variety of existing interpretability methods. We use the resulting conceptual framework to define the new method of Multi-task Distributed Alignment Search (MDAS), which allows us to find distributed representations satisfying multiple causal criteria. With Llama2-7B as the target language model, MDAS achieves state-of-the-art results on RAVEL, demonstrating the importance of going beyond neuron-level analyses to identify features distributed across activations. We release our benchmark at https://github.com/ explanare/ravel.

Research
Your browser does not support the video tag.

RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations

Christopher Potts, Jing Huang, Zhengxuan Wu, Mor Geva, Atticus Geiger
Natural Language ProcessingAug 14

Individual neurons participate in the representation of multiple high-level concepts. To what extent can different interpretability methods successfully disentangle these roles? To help address this question, we introduce RAVEL (Resolving Attribute–Value Entanglements in Language Models), a dataset that enables tightly controlled, quantitative comparisons between a variety of existing interpretability methods. We use the resulting conceptual framework to define the new method of Multi-task Distributed Alignment Search (MDAS), which allows us to find distributed representations satisfying multiple causal criteria. With Llama2-7B as the target language model, MDAS achieves state-of-the-art results on RAVEL, demonstrating the importance of going beyond neuron-level analyses to identify features distributed across activations. We release our benchmark at https://github.com/ explanare/ravel.