Get the latest news, advances in research, policy work, and education program updates from HAI in your inbox weekly.
Sign Up For Latest News
HAI Faculty Affiliate Diyi Yang studies the foundations of AI, ensuring these tools are designed with people in mind.
HAI Faculty Affiliate Diyi Yang studies the foundations of AI, ensuring these tools are designed with people in mind.
Silent Speech Interfaces (SSIs) offer a nonin- vasive alternative to brain-computer interfaces for soundless verbal communication. We in- troduce Multimodal Orofacial Neural Audio (MONA), a system that leverages cross-modal alignment through novel loss functions—cross- contrast (crossCon) and supervised temporal con- trast (supTcon)—to train a multimodal model with a shared latent representation. This archi- tecture enables the use of audio-only datasets like LibriSpeech to improve silent speech recog- nition. Additionally, our introduction of Large Language Model (LLM) Integrated Scoring Ad- justment (LISA) significantly improves recogni- tion accuracy. Together, MONA LISA reduces the state-of-the-art word error rate (WER) from 28.8% to 12.2% in the Gaddy (2020) benchmark dataset for silent speech on an open vocabulary. For vocal EMG recordings, our method improves the state-of-the-art from 23.3% to 3.7% WER. In the Brain-to-Text 2024 competition, LISA per- forms best, improving the top WER from 9.8% to 8.9%. To the best of our knowledge, this work represents the first instance where noninvasive silent speech recognition on an open vocabulary has cleared the threshold of 15% WER, demon- strating that SSIs can be a viable alternative to au- tomatic speech recognition (ASR). Our work not only narrows the performance gap between silent and vocalized speech but also opens new possi- bilities in human-computer interaction, demon- strating the potential of cross-modal approaches in noisy and data-limited regimes.
Silent Speech Interfaces (SSIs) offer a nonin- vasive alternative to brain-computer interfaces for soundless verbal communication. We in- troduce Multimodal Orofacial Neural Audio (MONA), a system that leverages cross-modal alignment through novel loss functions—cross- contrast (crossCon) and supervised temporal con- trast (supTcon)—to train a multimodal model with a shared latent representation. This archi- tecture enables the use of audio-only datasets like LibriSpeech to improve silent speech recog- nition. Additionally, our introduction of Large Language Model (LLM) Integrated Scoring Ad- justment (LISA) significantly improves recogni- tion accuracy. Together, MONA LISA reduces the state-of-the-art word error rate (WER) from 28.8% to 12.2% in the Gaddy (2020) benchmark dataset for silent speech on an open vocabulary. For vocal EMG recordings, our method improves the state-of-the-art from 23.3% to 3.7% WER. In the Brain-to-Text 2024 competition, LISA per- forms best, improving the top WER from 9.8% to 8.9%. To the best of our knowledge, this work represents the first instance where noninvasive silent speech recognition on an open vocabulary has cleared the threshold of 15% WER, demon- strating that SSIs can be a viable alternative to au- tomatic speech recognition (ASR). Our work not only narrows the performance gap between silent and vocalized speech but also opens new possi- bilities in human-computer interaction, demon- strating the potential of cross-modal approaches in noisy and data-limited regimes.

This brief presents the findings of an experiment that measures how persuasive AI-generated propaganda is compared to foreign propaganda articles written by humans.
This brief presents the findings of an experiment that measures how persuasive AI-generated propaganda is compared to foreign propaganda articles written by humans.


By having AI study a user’s context offline, researchers dramatically reduce the memory and cost required to make AI contextually aware.
By having AI study a user’s context offline, researchers dramatically reduce the memory and cost required to make AI contextually aware.


Can large language models, a form of artificial intelligence (AI), generate persuasive propaganda? We conducted a preregistered survey experiment of US respondents to investigate the persuasiveness of news articles written by foreign propagandists compared to content generated by GPT-3 davinci (a large language model). We found that GPT-3 can create highly persuasive text as measured by participants’ agreement with propaganda theses. We further investigated whether a person fluent in English could improve propaganda persuasiveness. Editing the prompt fed to GPT-3 and/or curating GPT-3’s output made GPT-3 even more persuasive, and, under certain conditions, as persuasive as the original propaganda. Our findings suggest that propagandists could use AI to create convincing content with limited effort.
Can large language models, a form of artificial intelligence (AI), generate persuasive propaganda? We conducted a preregistered survey experiment of US respondents to investigate the persuasiveness of news articles written by foreign propagandists compared to content generated by GPT-3 davinci (a large language model). We found that GPT-3 can create highly persuasive text as measured by participants’ agreement with propaganda theses. We further investigated whether a person fluent in English could improve propaganda persuasiveness. Editing the prompt fed to GPT-3 and/or curating GPT-3’s output made GPT-3 even more persuasive, and, under certain conditions, as persuasive as the original propaganda. Our findings suggest that propagandists could use AI to create convincing content with limited effort.


Stanford scholars respond to a federal RFC on dual use foundation models with widely available model weights, urging policymakers to consider their marginal risks.
Stanford scholars respond to a federal RFC on dual use foundation models with widely available model weights, urging policymakers to consider their marginal risks.
